Theoretical study of metal-ligand interaction in Sm(III), Eu(III), and Tb(III) complexes of coumarin-3-carboxylic acid in the gas phase and solution

Inorg Chem. 2007 Dec 10;46(25):10926-36. doi: 10.1021/ic7016616. Epub 2007 Nov 9.

Abstract

The interaction of lanthanide(III) cations (Ln(III) = Sm(III), Eu(III), and Tb(III)) with the deprotonated form of the coumarin-3-carboxylic acid (cca-) has been investigated by density functional theory (DFT/B3LYP) and confirmed by reference MP2 and CCSD(T) computations. Solvent effects on the geometries and stabilities of the Ln(III) complexes were computed using a combination of water clusters and a continuum solvation model. The following two series of systems were considered: (i) Ln(cca)2+, Ln(cca)2+, Ln(cca)3 and (ii) Ln(cca)(H2O)2Cl2, Ln(cca)2(H2O)2Cl, Ln(cca)3. The strength and character of the Ln(III)-cca- bidentate bonding were characterized by calculated Ln-O bond lengths, binding energies, ligand deformation energies, energy partitioning analysis, sigma-donation contributions, and natural population analyses. The energy decomposition calculations predicted predominant electrostatic interaction terms to the Ln-cca bonding (ionic character) and showed variations of the orbital interaction term (covalent contributions) for the Ln-cca complexes studied. Electron distribution analysis suggested that the covalent contribution comes mainly from the interaction with the carboxylate moiety of cca-.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Coumarins / chemistry*
  • Europium / chemistry*
  • Gases / chemistry*
  • Ligands
  • Models, Molecular
  • Molecular Conformation
  • Samarium / chemistry*
  • Solutions
  • Terbium / chemistry*

Substances

  • Coumarins
  • Gases
  • Ligands
  • Solutions
  • Terbium
  • Samarium
  • Europium
  • coumarin-3-carboxylic acid