Reactive oxygen species involved in prenylflavonoids, icariin and icaritin, initiating cardiac differentiation of mouse embryonic stem cells

J Cell Biochem. 2008 Apr 1;103(5):1536-50. doi: 10.1002/jcb.21541.

Abstract

The significant promoting effects of some prenylflavonoids on cardiac differentiation of mouse embryonic stem (ES) cells via reactive oxygen species (ROS) signaling pathway were investigated. The most effective differentiation was facilitated by icariin (ICA), followed by icaritin (ICT), while desmethylicaritin (DICT) displayed the weakest but still significant inducible effect. Contrarily, DICT demonstrated the strongest anti-oxidative activity while ICA displayed only little in vitro, which was well matched with the hydroxyl (OH) numbers and the positions in the molecular structures. Therefore, ROS signaling cascades were assumed to be involved in prenylflavonoids induced cardiomyogenesis. Treatment with ICA, intracellular ROS in embryoid bodies was rapidly elevated, which was abolished by the NADPH-oxidase inhibitor apocynin; elimination of intracellular ROS by vitamin E or pyrrolidine dithiocarbamate (PDTC) inhibited ICA induced cardiomyogenesis; ROS-sensitive extracellular-regulated kinase 1, 2 (ERK1, 2) and p38 activation were further observed, the cardiomyogenesis was significantly inhibited in the presence of ERK1, 2 or p38 inhibitor U0126 or SB203580, indicating the roles of NADPH-ROS-MAPKs signaling cascades in prenylflavonoids induced cardiac differentiation. There was no difference in Nox4 NADPH oxidase expression between ICA and ICT treatments, however, ROS concentration in EBs after ICT administration was lower than that after ICA treatment, followed by less activation of ERK1, 2, and p38. These results revealed that the significant promoting effects of prenylflavonoids on cardiac differentiation was at least partly via ROS signaling cascades, and the facilitating abilities preferentially based on the nature of prenylflavonoids themselves, but anti-oxidative activity determined by the OH numbers and the positions in the structures do influence the cardiomyogenesis in vitro.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation / drug effects*
  • Cell Line
  • Embryonic Stem Cells / cytology
  • Embryonic Stem Cells / metabolism*
  • Enzyme Inhibitors / pharmacology
  • Flavonoids / pharmacology*
  • MAP Kinase Signaling System / drug effects*
  • Mice
  • Mitogen-Activated Protein Kinase 1 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 3 / metabolism
  • Myocytes, Cardiac / cytology
  • Myocytes, Cardiac / metabolism*
  • NADPH Oxidase 4
  • NADPH Oxidases / antagonists & inhibitors
  • NADPH Oxidases / metabolism
  • Reactive Oxygen Species
  • p38 Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Enzyme Inhibitors
  • Flavonoids
  • Reactive Oxygen Species
  • desmethylicaritin
  • NADPH Oxidase 4
  • NADPH Oxidases
  • Nox4 protein, mouse
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • p38 Mitogen-Activated Protein Kinases
  • icaritin
  • icariin