Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation

Cell Physiol Biochem. 2007;20(6):935-46. doi: 10.1159/000110454.

Abstract

Mature osteoclasts have an increased citric acid cycle and mitochondrial respiration to generate high ATP production and ultimately lead to bone resorption. However, changes in metabolic pathways during osteoclast differentiation have not been fully illustrated. We report that glycolysis and oxidative phosphorylation characterized by glucose and oxygen consumption as well as lactate production were increased during receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis from RAW264.7 and bone marrow-derived macrophage cells. Cell proliferation and differentiation varied according to glucose concentrations (0 to 100 mM). Maximal cell growth occurred at 20 mM glucose concentration and differentiation occurred at 5 mM concentration. Despite the similar growth rates exhibited when cultured cells were exposed to either 5 mM or 40 mM glucose, their differentiation was markedly decreased in high glucose concentrations. This finding suggests the possibility that osteoclastogenesis could be regulated by changes in metabolic substrate concentrations. To further address the effect of metabolic shift on osteoclastogenesis, we exposed cultured cells to pyruvate, which is capable of promoting mitochondrial respiration. Treatment of pyruvate synergistically increased osteoclastogenesis through the activation of RANKL-stimulated signals (ERK and JNK). We also found that osteoclastogenesis was retarded by blocking ATP production with either the inhibitors of mitochondrial complexes, such as rotenone and antimycin A, or the inhibitor of ATP synthase, oligomycin. Taken together, these results indicate that glucose metabolism during osteoclast differentiation is accelerated and that a metabolic shift towards mitochondrial respiration allows high ATP production and induces enhanced osteoclast differentiation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / biosynthesis
  • Animals
  • Cell Differentiation / drug effects*
  • Cell Line
  • Cell Proliferation / drug effects
  • Cell Respiration / drug effects
  • Female
  • Glucose / metabolism*
  • Glucose Transport Proteins, Facilitative / metabolism
  • Glycolysis / drug effects
  • Mice
  • Mice, Inbred C57BL
  • Mitochondria / drug effects
  • Mitochondria / metabolism
  • Models, Biological
  • Osteoclasts / cytology*
  • Osteoclasts / metabolism*
  • Oxygen Consumption / drug effects
  • Pyruvic Acid / pharmacology
  • RANK Ligand / pharmacology*
  • Signal Transduction / drug effects
  • Stem Cells / cytology*
  • Stem Cells / metabolism*

Substances

  • Glucose Transport Proteins, Facilitative
  • RANK Ligand
  • Pyruvic Acid
  • Adenosine Triphosphate
  • Glucose