Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles

Ultrason Sonochem. 2008 Apr;15(4):517-523. doi: 10.1016/j.ultsonch.2007.08.010. Epub 2007 Sep 19.

Abstract

In most applications, nanoparticles are required to be in a well-dispersed state prior to commercialisation. Conventional technology for dispersing particles into liquids, however, usually is not sufficient, since the nanoparticles tend to form very strong agglomerates requiring extremely high specific energy inputs in order to overcome the adhesive forces. Besides conventional systems as stirred media mills, ultrasound is one means to de-agglomerate nanoparticles in aqueous dispersions. In spite of several publications on ultrasound emulsification there is insufficient knowledge on the de-agglomeration of nanoparticulate systems in dispersions and their main parameters of influence. Aqueous suspensions of SiO2-particles were stressed up to specific energies EV of 10(4) kJ/m3 using ultrasound. Ultrasonic de-agglomeration of nanoparticles in aqueous solution is considered to be mainly a result of cavitation. Both hydrostatic pressure of the medium and the acoustic amplitude of the sound wave affect the intensity of cavitation. Furthermore, the presence of gas in the dispersion medium influences cavitation intensity and thus the effectiveness of the de-agglomeration process. In this contribution both, the influence of these parameters on the result of dispersion and the relation to the specific energy input are taken into account. For this, ultrasound experiments were carried out at different hydrostatic pressure levels (up to 10 bars) and amplitude values (64-123 microm). Depending on the optimisation target (time, energy input,...) different parameters limit the dispersion efficiency and result. All experimental results can be explained with the specific energy input that is a function of the primary input parameters of the process.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Gases
  • Hydrostatic Pressure
  • Nanoparticles*
  • Particle Size
  • Ultrasonics

Substances

  • Gases