On the conjugation length for oligo(ethynylnaphthalene)-based molecular rods

Chemistry. 2007;13(36):10194-203. doi: 10.1002/chem.200701235.

Abstract

The synthesis is described for a small series of oligomers built from (2, 3, 4 or 6) ethynyl-naphthalene repeat units and end-capped with solubilising 1,2,3-tris-dodecyloxy-benzene groups. These compounds absorb in the near-UV region and exhibit strong fluorescence in both fluid solution and a glassy matrix at 77 K. The spectral profiles are fully consistent with a structurally heterogeneous ground state becoming more planar upon excitation and with the low-temperature glass further stabilising the co-planar orientation. The absorption and fluorescence maxima move towards lower energy with increasing number of repeat units and there is a corresponding increase in the Huang-Rhys factor for the radiative process. The non-radiative rate constants also depend on molecular length and are well explained in terms of the energy-gap law. In contrast, very weak phosphorescence is observed at 77 K for which the peak maximum and lifetime remain insensitive to the number of naphthalene units. The triplet lifetimes recorded at ambient temperature are also independent of the molecular length but the triplet-triplet absorption spectra change throughout the series. These results are discussed in terms of the degree of electronic coupling between adjacent repeat units for each of the relevant excited states. During these studies it was noted that the rate of intersystem crossing to the triplet manifold is but weakly affected by heavy-atom perturbers. A non-fluorescent complex is formed between iodoethane and the molecular rod but the corresponding bimolecular process occurs at well below the diffusion-controlled limit. This behaviour is considered in terms of spin-orbit coupling between the excited states and takes account of the differing conjugation lengths.