Rotational diffusion of ionic and neutral solutes in mixed micelles: effect of surfactant to block copolymer mole ratio on solute rotation

J Chem Phys. 2007 Oct 21;127(15):154904. doi: 10.1063/1.2798754.

Abstract

Rotational diffusion of an ionic solute rhodamine 110 and a neutral solute 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) has been investigated in aqueous mixtures of cetyltrimethylammonium chloride (CTAC) and poly(ethylene oxide)20-poly(propylene oxide)70-poly(ethylene oxide)20 (P123). The purpose of this work is to understand how an increase in the mole ratio of surfactant to block copolymer from low to high influences the dynamics of ionic and neutral solute molecules. The variation in the mole ratio of CTAC to P123 from low to high has resulted in a drastic increase in the average reorientation time of rhodamine 110. In contrast, an exactly opposite trend has been noticed in the case of DMDPP. In the low mole ratio regime, rhodamine 110 and DMDPP are located at the interface and palisade layer, respectively, of P123 micelle-CTAC complexes. On the other hand, in the high mole ratio regime, both the probes are located in the Stern layer of CTAC-P123 complexes. The enhancement in the average reorientation time of rhodamine 110 with an increase in the mole ratio of surfactant to block copolymer has been rationalized on the basis of formation of rhodamine 110-Cl ion pair, which in turn associates with the cationic head groups of CTAC-P123 complexes. The observed decrease in the average reorientation time of DMDPP with an increase in the mole ratio of CTAC to P123 is a consequence of lower microviscosity of the Stern layer of CTAC-P123 complexes compared to the palisade layer of P123 micelle-CTAC complexes.