Nucleation and growth in the collapsed langmuir monolayers from semifluorinated alkanes

J Phys Chem B. 2007 Nov 8;111(44):12787-94. doi: 10.1021/jp0748462. Epub 2007 Oct 18.

Abstract

The 3D phase formation was monitored in relaxation experiments of the collapsed Langmuir monolayers of selected partially fluorinated tetracosanes, that is, F6H18, F8H16, and F10H14. To carry out these experiments, the classical method of surface manometry, such as pi-A isotherms registration and the molecular area-time dependencies, under quasi-static monitoring conditions were applied. The evolution of 3D structures at the water/air interface was observed with Brewster angle microscopy (BAM). The obtained data were interpreted according to the nucleation-growth-collision theory model. It occurred that, even though the investigated chemicals are not classical surfactants and do not possess any polar headgroup, their evolution from a 2D monolayer to 3D structures can be successfully modeled with the above-mentioned theory. The influence of the subphase temperature on the nucleation process is also discussed.