Walls inhibit chaotic mixing

Phys Rev Lett. 2007 Sep 14;99(11):114501. doi: 10.1103/PhysRevLett.99.114501. Epub 2007 Sep 10.

Abstract

We report on experiments of chaotic mixing in a closed vessel, in which a highly viscous fluid is stirred by a moving rod. We analyze quantitatively how the concentration field of a low-diffusivity dye relaxes towards homogeneity, and we observe a slow algebraic decay of the inhomogeneity, at odds with the exponential decay predicted by most previous studies. Visual observations reveal the dominant role of the vessel wall, which strongly influences the concentration field in the entire domain and causes the anomalous scaling. A simplified 1D model supports our experimental results. Quantitative analysis of the concentration pattern leads to scalings for the distributions and the variance of the concentration field consistent with experimental and numerical results.