Interaction of N-nitrosodiethylamine/bovine serum albumin complexes with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine monolayers at the air-water interface

J Colloid Interface Sci. 2007 Dec 15;316(2):238-49. doi: 10.1016/j.jcis.2007.07.079. Epub 2007 Sep 25.

Abstract

We report the effect of N-nitrosodiethylamine (NDA) on the interaction between bovine serum albumin (BSA) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine monolayers (DPPC) at the air-water interface. We prepared aqueous solutions of NDA/BSA complexes maintaining a constant concentration of BSA of 1.49 x 10(-9) M and using NDA concentrations to obtain 2000, 4000, 6000, 12,500, and 25,000 NDA/BSA molar ratios. The hysteresis area and the compressional modulus of the compression-expansion cycles performed at different times were dependent on the NDA concentration. The cycles performed demonstrate the stability of the new phase of DPPC/BSA and DPPC/NDA/BSA monolayers. This was achieved probably because the BSA concentration used was lower than the one needed for BSA to inhibit the return of DPPC molecules to the interface. Results of the compressional modulus at the onset of the new phase, obtained around 17 mN/m, 15 min and 1, 3, 5, and 12 h after DPPC deposition, indicated that the 3.0 x 10(-6) M NDA concentration produced a more rigid film, probably due to the higher alpha-helix content of BSA. AFM images were obtained for DPPC/BSA and two DPPC/NDA/BSA complexes. Our images show that 12,500 NDA/BSA molecules were mostly adsorbed in the liquid condensed phase. However, BSA molecules were distributed more homogeneously.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1,2-Dipalmitoylphosphatidylcholine / chemistry*
  • Air
  • Animals
  • Cattle
  • Diethylnitrosamine / chemistry*
  • Membranes, Artificial*
  • Particle Size
  • Serum Albumin, Bovine / chemistry*
  • Surface Properties
  • Water / chemistry

Substances

  • Membranes, Artificial
  • Water
  • 1,2-Dipalmitoylphosphatidylcholine
  • Serum Albumin, Bovine
  • Diethylnitrosamine