Lipids as modulators of membrane fusion mediated by viral fusion proteins

Eur Biophys J. 2007 Nov;36(8):887-99. doi: 10.1007/s00249-007-0201-z. Epub 2007 Sep 19.

Abstract

Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called "rafts", or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.

Publication types

  • Review

MeSH terms

  • Animals
  • Glycoproteins / chemistry
  • Glycoproteins / metabolism
  • Humans
  • Lipids / chemistry*
  • Membrane Fusion / physiology*
  • Viral Fusion Proteins / chemistry*

Substances

  • Glycoproteins
  • Lipids
  • Viral Fusion Proteins