Brillouin-scattering determination of the acoustic properties and their pressure dependence for three polymeric elastomers

J Chem Phys. 2007 Sep 14;127(10):104906. doi: 10.1063/1.2757173.

Abstract

The acoustic properties of three polymer elastomers, a cross-linked poly(dimethylsiloxane) (Sylgard 184), a cross-linked terpolymer poly(ethylene-vinyl acetate-vinyl alcohol), and a segmented thermoplastic poly(ester urethane) copolymer (Estane 5703), have been measured from ambient pressure to approximately 12 GPa by using Brillouin scattering in high-pressure diamond anvil cells. The Brillouin-scattering technique is a powerful tool for aiding in the determination of equations of state for a variety of materials, but to date has not been applied to polymers at pressures exceeding a few kilobars. For the three elastomers, both transverse and longitudinal acoustic modes were observed, though the transverse modes were observed only at elevated pressures (>0.7 GPa) in all cases. From the Brillouin frequency shifts, longitudinal and transverse sound speeds were calculated, as were the C(11) and C(12) elastic constants, bulk, shear, and Young's moduli, and Poisson's ratios, and their respective pressure dependencies. P-V isotherms were then constructed, and fit to several empirical/semiempirical equations of state to extract the isothermal bulk modulus and its pressure derivative for each material. Finally, the lack of shear waves observed for any polymer at ambient pressure, and the pressure dependency of their appearance is discussed with regard to instrumental and material considerations.