Self-directed growth of contiguous perpendicular molecular lines on H-Si(100) surfaces

J Phys Chem A. 2007 Dec 13;111(49):12257-9. doi: 10.1021/jp074389p. Epub 2007 Sep 15.

Abstract

Future nanoscale integrated circuits will require the realization of interconnections using molecular-scale nanostructures; a practical fabrication scheme would need to be largely self-assembling and operate on a large number of like structures in parallel. The self-directed growth of organic molecules on hydrogen-terminated silicon(100) [H-Si(100)] offers a simple method of realizing one-dimensional molecular lines. In this work, we introduce the ability to change the growth direction and form more complex, contiguous shapes. Numerous styrene and trimethylene sulfide L shapes were grown on a H-Si(100)-3x1 surface in parallel with no intermediate surface lithography steps, and similar shapes were also grown using allyl mercaptan and benzaldehyde on H-Si(100)-2x1. Registered scanning tunneling microscopy (STM) images and high-resolution electron energy loss spectroscopy (HREELS) were used to investigate the growth process.