Intermediates in the destruction of chlorinated C1 hydrocarbons on La-based materials: mechanistic implications

Chemistry. 2007;13(34):9561-71. doi: 10.1002/chem.200700901.

Abstract

Activity experiments using GC analysis of reactor effluent have been combined with in situ IR spectroscopy to elucidate the reaction steps in the destructive adsorption of CHCl3, CH2Cl2, and CH3Cl over LaOCl. The IR results show that during reaction, LaOCl is covered with carbonate, formate, and methoxy groups. The relative amount of each of these surface intermediates depends on the Cl/H ratio of the reactant. The decomposition of the surface species leads to formation of the reaction products, and is influenced by the temperature and the relative amount of Cl present on the surface. The GC results show that the activity for the destructive adsorption of H-containing chlorinated C1 compounds decreases with increasing hydrogen content of the reactant. The acquired insight into the mechanism of destructive adsorption is crucial to the design of new catalyst materials for the efficient conversion of chlorinated hydrocarbons into nonhazardous products or reusable chemicals.