Uranium stabilization of c28: a tetravalent fullerene

Science. 1992 Sep 18;257(5077):1661-4. doi: 10.1126/science.257.5077.1661.

Abstract

Laser vaporization experiments with graphite in a supersonic cluster beam apparatus indicate that the smallest fullerene to form in substantial abundance is C(28). Although ab initio quantum chemical calculations predict that this cluster will favor a tetrahedral cage structure, it is electronically open shell. Further calculations reveal that C(28) in this structure should behave as a sort of hollow superatom with an effective valence of 4. This tetravalence should be exhibited toward chemical bonding both on the outside and on the inside of the cage. Thus, stable closed-shell derivatives of C(28) with large highest occupied molecular orbital-lowest unoccupied molecular orbital gaps should be attainable either by reacting at the four tetrahedral vertices on the outside of the C(28) cage to make, for example, C(28)H(4), or by trapping a tetravalent atom inside the cage to make endothedral fullerenes such as Ti@C(28). An example of this second, inside route to C(28) stabilization is reported here: the laser and carbon-arc production of U@C(28).