Role of SNAREs and H+-ATPase in the targeting of proton pump-coated vesicles to collecting duct cell apical membrane

Kidney Int. 2007 Dec;72(11):1310-5. doi: 10.1038/sj.ki.5002500. Epub 2007 Sep 5.

Abstract

Recycling of H(+)-ATPase to the apical plasma membrane, mediated by vesicular exocytosis and endocytosis, is an important mechanism for controlling H(+) secretion by the collecting duct. We hypothesized that SNAREs (soluble N-ethylmaleimide-sensitive factor attachment proteins) may be involved in the targeting of H(+)-ATPase-coated vesicles. Using a tissue culture model of collecting duct H(+) secretory cells (inner medullary collecting duct (IMCD) cells), we demonstrated that they express the proteins required for SNARE-mediated exocytosis and form SNARE-fusion complexes upon stimulation of H(+)-ATPase exocytosis. Furthermore, exocytic amplification of apical H(+)-ATPase is sensitive to clostridial toxins that cleave SNAREs and thereby inhibit secretion. Thus, SNAREs are critical for H(+)-ATPase cycling to the plasma membrane. The process in IMCD cells has a feature distinct from that of neuronal cells: the SNARE complex includes and requires the vesicular cargo (H(+)-ATPase) for targeting. Using chimeras and truncations of syntaxin 1, we demonstrated that there is a specific cassette within the syntaxin 1 H3 domain that mediates binding of the SNAREs and a second distinct H3 region that binds H(+)-ATPase. Utilizing point mutations of the B1 subunit of the H(+)-ATPase, we document that this subunit contains specific targeting information for the H(+)-ATPase itself. In addition, we found that Munc-18-2, a regulator of exocytosis, plays a multifunctional role in this system: it regulates SNARE complex formation and the affinity of syntaxin 1 for H(+)-ATPase.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Cell Line
  • Cell Membrane / physiology
  • Coated Vesicles / physiology
  • Kidney Tubules, Collecting / cytology
  • Kidney Tubules, Collecting / physiology*
  • Models, Animal
  • Proton Pumps / physiology
  • Proton-Translocating ATPases / physiology*
  • Rats
  • SNARE Proteins / physiology*

Substances

  • Proton Pumps
  • SNARE Proteins
  • Proton-Translocating ATPases