Targeted tyrosine iodination in a multi-tyrosine vasopressin analog

J Pept Sci. 2007 Nov;13(11):756-61. doi: 10.1002/psc.890.

Abstract

Iodination of the conserved 2-tyrosine (Tyr(2)) residue in the pressin and tocin rings of arginine- or lysine-vasopressin (AVP or LVP), and oxytocin, respectively, impairs binding to their respective receptors. Synthetic antagonists that have their Tyr(2) either replaced by another amino acid or irreversibly blocked by an O-methyl or O-ethyl ether, but have, instead, an iodinatable phenol moiety outside the pressin/tocin ring, are used for radiolabeling. We explored another approach to avoid iodinating Tyr(2) by capping this residue with a reversible O-acetyl group, incorporated during peptide synthesis. The O-acetyl-Tyr(2) LVP peptide, with a free iodinatable tyrosine attached to the epsilon-amine of 8-lysine, is iodinated at a neutral pH and purified by reverse-phase high-pressure liquid chromatography (HPLC) at an acidic pH, conditions under which the O-acetyl groups are stable. Deacetylation with hydroxylamine is selective, and leaves intact the disulfide bridge. The marked shortening of the HPLC retention time after deblocking produces a chemically homogeneous label, iodinated exclusively on the free tyrosine residue attached to the epsilon-amine of LVP. Hitherto, this (125)I labeled vasopressin agonist could be obtained only in low yield, via conjugation labeling with iodinated N-t-Boc-tyrosine succinimidyl ester. This fully reversible tyrosine protection strategy does not require special equipment, and retains the conserved Tyr(2), typical of vasopressin and oxytocin agonists.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • COS Cells
  • Chlorocebus aethiops
  • Halogenation*
  • Humans
  • Iodine Radioisotopes / chemistry
  • Molecular Sequence Data
  • Oxytocin / chemistry
  • Peptides / chemical synthesis
  • Peptides / chemistry
  • Tyrosine / chemistry*
  • Vasopressins / chemistry*

Substances

  • Iodine Radioisotopes
  • Peptides
  • Vasopressins
  • Tyrosine
  • Oxytocin