Carbon sequestration

Philos Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):815-30. doi: 10.1098/rstb.2007.2185.

Abstract

Developing technologies to reduce the rate of increase of atmospheric concentration of carbon dioxide (CO2) from annual emissions of 8.6PgCyr-1 from energy, process industry, land-use conversion and soil cultivation is an important issue of the twenty-first century. Of the three options of reducing the global energy use, developing low or no-carbon fuel and sequestering emissions, this manuscript describes processes for carbon (CO2) sequestration and discusses abiotic and biotic technologies. Carbon sequestration implies transfer of atmospheric CO2 into other long-lived global pools including oceanic, pedologic, biotic and geological strata to reduce the net rate of increase in atmospheric CO2. Engineering techniques of CO2 injection in deep ocean, geological strata, old coal mines and oil wells, and saline aquifers along with mineral carbonation of CO2 constitute abiotic techniques. These techniques have a large potential of thousands of Pg, are expensive, have leakage risks and may be available for routine use by 2025 and beyond. In comparison, biotic techniques are natural and cost-effective processes, have numerous ancillary benefits, are immediately applicable but have finite sink capacity. Biotic and abiotic C sequestration options have specific nitches, are complementary, and have potential to mitigate the climate change risks.

Publication types

  • Review

MeSH terms

  • Agriculture / methods*
  • Air Pollution* / analysis
  • Air Pollution* / prevention & control
  • Biomass
  • Carbon Dioxide / analysis*
  • Carbon Dioxide / metabolism*
  • Environmental Monitoring
  • Greenhouse Effect*
  • Vehicle Emissions / analysis

Substances

  • Vehicle Emissions
  • Carbon Dioxide