Apoptotic signal transduction and T cell tolerance

Autoimmunity. 2007 Sep;40(6):442-52. doi: 10.1080/08916930701464962.

Abstract

The healthy immune system makes use of a variety of surveillance mechanisms at different stages of lymphoid development to prevent the occurrence and expansion of potentially harmful autoreactive T cell clones. Disruption of these mechanisms may lead to inappropriate activation of T cells and the development of autoimmune and lymphoproliferative diseases [such as multiple sclerosis, rheumatoid arthritis, lupus erythematosus, diabetes and autoimmune lymphoproliferative syndrome (ALPS)]. Clonal deletion of T cells with high affinities for self-peptide-MHC via programmed cell death (apoptosis) is an essential mechanism leading to self-tolerance. Referred to as negative selection, central tolerance in the thymus serves as the first checkpoint for the developing T cell repertoire and involves the apoptotic elimination of potentially autoreactive T cells clones bearing high affinity T cell receptors (TCR) that recognize autoantigens presented by thymic epithelial cells. Autoreactive T cells that escape negative selection are held in check in the periphery by either functional inactivation ("anergy") or extrathymic clonal deletion, both of which are dependent on the strength and frequency of the TCR signal and the costimulatory context, or by regulatory T cells. This review provides an overview of the different molecular executioners of cell death programs that are vital to intrathymic or extrathymic clonal deletion of T cells. Further, the potential involvement of various apoptotic signaling paradigms are discussed with respect to the genesis and pathophysiology of autoimmune disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Apoptosis*
  • Autoimmunity
  • Clonal Deletion
  • Humans
  • Lymphocyte Activation
  • Receptors, Antigen, T-Cell / genetics
  • Receptors, Antigen, T-Cell / immunology*
  • Receptors, Antigen, T-Cell / metabolism
  • Self Tolerance* / genetics
  • Signal Transduction*
  • T-Lymphocyte Subsets / immunology
  • T-Lymphocyte Subsets / metabolism
  • T-Lymphocytes / cytology
  • T-Lymphocytes / immunology*
  • T-Lymphocytes / metabolism
  • Thymus Gland / immunology

Substances

  • Receptors, Antigen, T-Cell