Is phage DNA 'injected' into cells--biologists and physicists can agree

Curr Opin Microbiol. 2007 Aug;10(4):401-9. doi: 10.1016/j.mib.2007.04.004. Epub 2007 Aug 21.

Abstract

The double-stranded DNA inside bacteriophages is packaged at a density of approximately 500 mg/ml and exerts an osmotic pressure of tens of atmospheres. This pressure is commonly assumed to cause genome ejection during infection. Indeed, by the addition of their natural receptors, some phages can be induced in vitro to completely expel their genome from the virion. However, the osmotic pressure of the bacterial cytoplasm exerts an opposing force, making it impossible for the pressure of packaged DNA to cause complete genome ejection in vivo. Various processes for complete genome ejection are discussed, but we focus on a novel proposal suggesting that the osmotic gradient between the extracellular environment and the cytoplasm results in fluid flow through the phage virion at the initiation of infection. The phage genome is thereby sucked into the cell by hydrodynamic drag.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Bacteria / cytology
  • Bacteria / virology*
  • Bacteriophages / genetics*
  • Bacteriophages / physiology
  • DNA, Viral / physiology*
  • Osmotic Pressure

Substances

  • DNA, Viral