A new approach to image copy detection based on extended feature sets

IEEE Trans Image Process. 2007 Aug;16(8):2069-79. doi: 10.1109/tip.2007.900099.

Abstract

Conventional image copy detection research concentrates on finding features that are robust enough to resist various kinds of image attacks. However, finding a globally effective fealure is difficult and, in many cases, domain dependent. Instead of imply extracting features from copyrighted images directly, we propose a new framework called the extended feature set for detecting copies of images. In our approach, virtual prior attacks are applied to copyrighted images to generate novel features, which serve as training data. The copy-detection problem can be solved by learning classifiers from the training data, thus, generated. Our approach can be integrated into existing copy detectors to further improve their performance. Experiment results demonstrate that the proposed approach can substantially enhance the accuracy of copy detection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Computer Graphics*
  • Computer Security*
  • Data Compression / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Patents as Topic
  • Pattern Recognition, Automated / methods*
  • Product Labeling / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted