Hydrogen migration and vinylidene pathway for formation of methane in the 193 nm photodissociation of propene: CH3CH=CH2 and CD3CD=CD2

J Phys Chem A. 2007 Aug 30;111(34):8330-5. doi: 10.1021/jp072475j. Epub 2007 Aug 8.

Abstract

Photodissociation channels and the final product yields from the 193 nm photolysis of propene-h6 (CH(2)=CHCH(3)) and propene-d6 (CD(2)=CDCD(3)) have been investigated, employing gas chromatography, mass spectroscopy, and flame ionization (GC/MS/FID) detection methods. The yields of methane as well as butadiene relative to ethane show considerable variations when propene-h6 or propene-d6 are photolyzed. This suggests significant variances in the relative importance of primary photolytic processes and/or secondary radical reactions, occurring subsequent to the photolysis. Theoretical calculations suggest the potential occurrence of an intramolecular dissociation through a mechanism involving vinylidene formation, accompanied by an ethylenic H-migration through the pi-orbitals. This process affects the final yields of methane-h4 versus methane-d4 with respect to other products. The product yields from previous studies of the 193 nm photolysis of methyl vinyl ketone-h6 and -d6 (CH(2)=CHCOCH(3), CD(2)=CDCOCD(3)), alternative precursors for generating methyl and vinyl radicals, are compared with the current results for propene.