Nutrigenetics

Forum Nutr. 2007:60:25-30. doi: 10.1159/000107064.

Abstract

Nutrients interact with the human genome to modulate molecular pathways that may become disrupted, resulting in an increased risk of developing various chronic diseases. Genetic polymorphisms affect the metabolism of dietary factors, which in turn affects the expression of genes involved in a number of important metabolic processes. Genetic polymorphisms affecting nutrient metabolism may explain some of the inconsistencies among epidemiological studies relating diet to chronic diseases such as cancer, diabetes, rheumatoid arthritis, osteoporosis and cardiovascular disease. Understanding how genetic variations influence nutrient digestion, absorption, transport, biotransformation, uptake and elimination will provide a more accurate measure of exposure to the bioactive food ingredients ingested. Furthermore, genetic polymorphisms in the targets of nutrient action such as receptors, enzymes or transporters could alter molecular pathways that influence the physiological response to dietary interventions. Among the candidate genes with functional variants that affect nutrient metabolism are those that code for xenobiotic-metabolizing enzymes (also called drug-metabolizing enzymes). These enzymes are involved in the phase I and II biotransformation reactions that produce metabolites with either increased or decreased biological activity compared to the parent compound. A number of dietary factors are known to alter the expression of these genes that, in turn, metabolize a vast array of foreign chemicals including dietary factors such as antioxidants, vitamins, phytochemicals, caffeine, sterols, fatty acids and alcohol. Knowledge of the genetic basis for the variability in response to these dietary factors should result in a more accurate measure of exposure of target tissues of interest to these compounds and their metabolites. Examples of how 'slow' and 'fast' metabolizers respond differently to the same dietary exposures will be discussed. Identifying relevant diet-gene interactions will benefit individuals seeking personalized dietary advice as well as improve public health recommendations by providing sound scientific evidence linking diet and health.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Chronic Disease
  • Diet
  • Energy Metabolism / genetics*
  • Energy Metabolism / physiology
  • Genetic Predisposition to Disease
  • Genetic Variation*
  • Humans
  • Nutritional Physiological Phenomena*
  • Polymorphism, Genetic*