Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells

J Am Chem Soc. 2007 Aug 15;129(32):9999-10010. doi: 10.1021/ja072367a. Epub 2007 Jul 21.

Abstract

Carbon nanomaterials, including herringbone graphite carbon nanofibers (GNFH), multiwalled carbon nanotubes (MWCNT), and carbon black, were surface-modified by a new poly(vinylpyrrolidone) (PVP) grafting process as well as by the conventional acid-oxidation (AO) process, and characterized by FTIR, TGA, Raman, HRTEM, XRD, and XPS measurements. Pt nanoparticles of 1.8 nm were evenly deposited on all PVP-grafted carbon nanomaterials. The effects of the two surface modification processes on the dispersion, average Pt nanoparticle sizes, the electrocatalytic performance, and electrical conductivities of Pt-carbon nanocomposites in direct methanol oxidation were systematically studied and compared. It was found that the PVP-grafted carbon nanomaterials have much less loss in the electric conductivity and thus better electrocatalytic performance, 17-463% higher, than their corresponding acid oxidation-treated nanocomposites. The electrocatalytic performance of the Pt-carbon nanocomposites decreases in the following order: Pt-PVP-GNFH > Pt-PVP-MWCNTarc > Pt-AO-MWCNTarc > Pt-PVP-MWCNTCVD > Pt-AO-MWCNTCVD > Pt-XC-72R > Pt-AO-GNFH, with the Pt-PVP-GNFH nanocomposite having approximately 270% higher performance than that of the Pt-Vulcan XC-72R nanocomposite. In addition, PtRu-PVP-GNFH shows even better (50% higher) electrocatalytic activity than the Pt-PVP-GNFH nanocomposite at a 0.6 V applied voltage.