Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography

Magn Reson Med. 2007 Aug;58(2):346-53. doi: 10.1002/mrm.21286.

Abstract

Chronic liver disease is a world-wide problem that causes progressive hepatic fibrosis as a hallmark of progressive injury. At present, the gold standard for diagnosing hepatic fibrosis is liver biopsy, which is an invasive method with many limitations, including questionable accuracy and risks of complications. MR elastography (MRE), a phase-contrast MRI technique for quantitatively assessing the mechanical properties of soft tissues, is a potential noninvasive diagnostic method to assess hepatic fibrosis. In this work, MRE was evaluated as a quantitative method to assess the in vivo mechanical properties of the liver tissues in a knockout animal model of liver fibrosis. This work demonstrates that the shear stiffness of liver tissue increases systematically with the extent of hepatic fibrosis, as measured by histology. A linear correlation between liver stiffness and fibrosis extent was well-defined in this animal model. An additional finding of the study was that fat infiltration, commonly present in chronic liver disease, does not significantly correlate with liver stiffness at each fibrosis stage and thus does not appear to interfere with the ability of MRE to assess fibrosis extent. In conclusion, MRE has the potential not only for assessing liver stiffness, but also for monitoring potential therapies for hepatic fibrosis.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Algorithms
  • Animals
  • Disease Models, Animal
  • Elasticity
  • Image Interpretation, Computer-Assisted
  • Liver Cirrhosis / diagnosis*
  • Liver Cirrhosis / pathology
  • Liver Cirrhosis / physiopathology
  • Magnetic Resonance Imaging / methods*
  • Mice
  • Mice, Knockout
  • Phantoms, Imaging
  • Regression Analysis
  • Stress, Mechanical