Applications of field-flow fractionation in proteomics: presence and future

Proteomics. 2007 Aug;7(16):2719-28. doi: 10.1002/pmic.200700113.

Abstract

Field-flow fractionation (FFF) represents a group of elution separation methods where external force fields act perpendicularly on analytes in a carrier liquid flows with nonuniform velocity profiles. It is an elution separation method that enables to separate analytes in relatively short times and collect fractions for further characterization or for investigation of their properties. Other advantages of FFF are small consumption of samples and gentle experimental conditions. These make FFF uniquely qualified for separation and purification of biological samples. The most promising are applications of different variants of flow FFF utilizing a cross flow through membrane channel walls to separate proteins. The separation is based on differences in protein diffusion coefficients, which allows calculating the size of macromolecules. Other FFF techniques (e.g., electrical, isoelectric, and sedimentation FFF) were also used for separation of biomolecules. FFF appears to be not only promising rapid technique for protein separation but it offers some other advantages in sample preparation, especially, focusing (hyperlayer) FFF techniques that enable preparation of homogeneous fractions of cells. Selected applications of FFF to protein analysis are described and future trends in application of FFF to proteomics are discussed.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Fractionation, Field Flow*
  • Proteomics*