Chain conformation of water-insoluble hyperbranched polysaccharide from fungus

Biomacromolecules. 2007 Jul;8(7):2321-8. doi: 10.1021/bm070335+. Epub 2007 Jun 16.

Abstract

Water-insoluble polysaccharide (TM3a), extracted from sclerotia of Pleurotus tuber-regium, was identified as a hyperbranched beta-d-glucan from the results of one- and two-dimensional NMR and GC-MS analysis. The degree of branching of TM3a is 65.5%. TM3a was fractionated by using a non-solvent addition method into 14 fractions, and its solution properties in 0.25 M LiCl/dimethylsulfoxide (DMSO) solution were studied systematically by using static laser light scattering, dynamic light scattering, and viscometry at 25 degrees C. The dependences among the values of intrinsic viscosity ([eta]), radius of gyration (<S2>z 1/2), and hydradynamic radius (Rh) on weight-average molecular weight (Mw) were found as the following: [eta] = 0.46Mw0.30+/-0.01, <S2>z 1/2 = 4.79 x 10-2Mw0.43+/-0.04, and Rh = 5.01 x 10-2Mw0.41+/-0.02 in the Mw range from 1.94 x 105 to 2.06 x 107 for TM3a in a 0.25 M LiCl/DMSO solution at 25 degrees C. The current theory of polymer solution was applied to explain the relationship among the fractal dimension, ratio of geometric to hydrodynamic radius (rho = <S2>z 1/2/Rh), and MwA2/[eta] of TM3a. The results indicated that TM3a existed as a compact chain conformation with a sphere-like structure in LiCl/DMSO solution. Furthermore, by using transmission electron microscopy, we observed directly the spherical molecules with an average diameter of 23.0 +/- 1.8 nm.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fractals
  • Microscopy, Electron, Transmission
  • Pleurotus / chemistry*
  • Polysaccharides / chemistry*
  • Solubility
  • Spectroscopy, Fourier Transform Infrared
  • Water / chemistry*

Substances

  • Polysaccharides
  • Water