The effect of multidirectional mechanical vibration on peripheral circulation of humans

Clin Physiol Funct Imaging. 2007 Jul;27(4):211-6. doi: 10.1111/j.1475-097X.2007.00739.x.

Abstract

The physiological response of humans to vibration has intrigued researchers for some time, and recently in relation to its potential as a non-pharmacological means to improve peripheral blood flow. A new vibration device [Arapal Technologies Ltd (ATL), Christchurch, New Zealand] for pain relief that purportedly delivers multidirectional vibration waveforms, has been developed. The aim of the study was to quantify the effect of 30 min of mechanical vibration (60 Hz) using two ATL massage devices concurrently upon local peripheral blood flow in healthy humans. On the basis of past work it was expected that acute exposure of the body to the vibratory stimulus would increase local peripheral blood flow. In a randomized cross-over design, mean blood flow (MBF) to the calf was measured using venous occlusion plethysmography before, during 3 min and after 30 min exposure to the vibratory devices or placebo (non-vibratory) devices. Statistical analysis revealed no consistent differences between conditions and considerable individual variability. The MBF increase tended to be higher in the vibration condition than the placebo condition (P=0.16, 95% likely range=-14.4% to 82.2%), the mean increase from resting blood flow at the post-test was 26+/-49% in the vibration condition and 12+/-39% in the placebo condition. It took approximately 22 min of exposure to the vibratory stimulus to elicit peak blood flow (18 min with the placebo). Improvements in local blood flow may be beneficial in the therapeutic alleviation of pain or other symptoms resulting from acute or chronic musculoskeletal injuries.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Analysis of Variance
  • Blood Flow Velocity / physiology*
  • Cross-Over Studies
  • Female
  • Humans
  • Leg / blood supply*
  • Linear Models
  • Male
  • Middle Aged
  • Plethysmography
  • Vibration*