Nucleotide sequence, structural investigation and homology modeling studies of a Ca2+-independent alpha-amylase with acidic pH-profile

J Biochem Mol Biol. 2007 May 31;40(3):315-24. doi: 10.5483/bmbrep.2007.40.3.315.

Abstract

The novel alpha-amylase purified from locally isolated strain, Bacillus sp. KR-8104, (KRA) (Enzyme Microb Technol; 2005; 36: 666-671) is active in a wide range of pH. The enzyme maximum activity is at pH 4.0 and it retains 90% of activity at pH 3.5. The irreversible thermoinactivation patterns of KRA and the enzyme activity are not changed in the presence and absence of Ca(2+) and EDTA. Therefore, KRA acts as a Ca(2+)-independent enzyme. Based on circular dichroism (CD) data from thermal unfolding of the enzyme recorded at 222 nm, addition of Ca(2+) and EDTA similar to its irreversible thermoinactivation, does not influence the thermal denaturation of the enzyme and its T(m). The amino acid sequence of KRA was obtained from the nucleotide sequencing of PCR products of encoding gene. The deduced amino acid sequence of the enzyme revealed a very high sequence homology to Bacillus amyloliquefaciens (BAA) (85% identity, 90% similarity) and Bacillus licheniformis alpha-amylases (BLA) (81% identity, 88% similarity). To elucidate and understand these characteristics of the alpha-amylase, a model of 3D structure of KRA was constructed using the crystal structure of the mutant of BLA as the platform and refined with a molecular dynamics (MD) simulation program. Interestingly enough, there is only one amino acid substitution for KRA in comparison with BLA and BAA in the region involved in the calcium-binding sites. On the other hand, there are many amino acid differences between BLA and KRA at the interface of A and B domains and around the metal triad and active site area. These alterations could have a role in stabilizing the native structure of the loop in the active site cleft and maintenance and stabilization of the putative metal triad-binding site. The amino acid differences at the active site cleft and around the catalytic residues might affect their pKa values and consequently shift its pH profile. In addition, the intrinsic fluorescence intensity of the enzyme at 350 nm does not show considerable change at pH 3.5-7.0.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacillus / enzymology
  • Bacillus / genetics
  • Calcium / metabolism*
  • Circular Dichroism
  • Computer Simulation
  • Hydrogen-Ion Concentration
  • Models, Molecular
  • Molecular Sequence Data
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Sequence Analysis, DNA
  • Sequence Homology, Amino Acid
  • Structural Homology, Protein
  • Temperature
  • alpha-Amylases / chemistry*
  • alpha-Amylases / genetics
  • alpha-Amylases / metabolism*

Substances

  • alpha-Amylases
  • Calcium