The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models

Biomaterials. 2007 Sep;28(27):3977-86. doi: 10.1016/j.biomaterials.2007.05.008. Epub 2007 May 24.

Abstract

We determined whether a two-part space-conforming polyethylene glycol/dopa polymer-based gel promoted healing of contaminated wounds in mice. This silver-catalysed gel was previously developed to be broadly microbiocidal in vitro while being biocompatible with human wound cell functioning. Full-thickness wounds were created on the backs of mice. The wounds were inoculated with 10(4) CFU of each of four common skin wound contaminants, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanii and Clostridium perfringens. The wounds were then treated with our multifunctional polymer-based gel, the commercially available NewSkin product, or left to heal untreated. The untreated wounds were overtly infected, and presented detectable bacterial loads over the entire 21-day healing period, while the gel and NewSkin groups presented significantly smaller rises in bacterial levels and were cleared of detectable colonies by the third week, with the gel group clearing the bacteria earlier. While all three groups healed their wounds, the polymer-based gel-treated group demonstrated significantly earlier re-epithelialization and dermal maturation (P<0.05). This was reflected in a quick regain of tensile strength. This accelerated dermal maturation and regain in strength was noted in mice treated with the polymer-based gel when compared to wound treated with the commercially available Aquacel-Ag dressing (P<0.05). What distinguishes the polymer-based gel from these other products is that it is incorporated within the healing wound. These preclinical studies show that the anti-microbial polymer gel not only supports but also accelerates healing of bacterially contaminated wounds.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anti-Infective Agents / administration & dosage
  • Bandages, Hydrocolloid*
  • Female
  • Gels / administration & dosage
  • Mice
  • Polymers / administration & dosage*
  • Skin / drug effects*
  • Skin / injuries*
  • Skin / pathology
  • Skin Diseases, Bacterial / drug therapy
  • Skin Diseases, Bacterial / pathology
  • Treatment Outcome
  • Wound Healing / drug effects*
  • Wound Infection / drug therapy*
  • Wound Infection / pathology*

Substances

  • Anti-Infective Agents
  • Gels
  • Polymers