Tracking the fate of iron in early development of human blood flukes

Int J Biochem Cell Biol. 2007;39(9):1646-58. doi: 10.1016/j.biocel.2007.04.017. Epub 2007 Apr 27.

Abstract

Iron (Fe) is an important trace element found in nearly all organisms, and is used as a cofactor in many biological reactions. One role for Fe in some invertebrates is in stabilization of extracellular matrices. The human blood fluke, Schistosoma japonicum, is responsible for significant human disease in developing and tropical nations. Disease in humans arises from host immunological reaction to parasite eggs that lodge in tissues. Schistosomes require Fe for development in their hosts, and store abundant Fe in vitelline (eggshell-forming) cells of the female system. The understanding of Fe metabolism and functionality are aspects of its biology that may be exploited in future therapeutics. The biology of Fe stores in vitelline cells of S. japonicum was investigated to illuminate possible functions of this element in early development of these parasites. Vitelline Fe is stored in yolk ferritin that is upregulated in females and is also expressed at low levels in egg-stages and adult males. Laser microdissection microscopy, coupled with reverse transcriptase- and real time-PCR amplification of schistosome ferritin sequences, confirmed that the vitelline cells are the likely progenitor cells of yolk ferritin. Assessment of Fe concentrations in whole male and whole female adult worms, eggs and purified eggshells by colorimetric assays and mass spectroscopy demonstrated higher levels of Fe in the female parasite, but also high levels of the element in whole parasite eggs and purified eggshell. Qualitative energy dispersive spectroscopy of purified eggshells, revealed that Fe is abundant in the eggshell, the matrix of which is composed of heavily cross-linked eggshell precursor proteins. Thus, vitelline stores of Fe are implicated in eggshell cross-linking in platyhelminths. These observations emphasise the importance of Fe in schistosome metabolism and egg formation and suggest new avenues for disruption of egg formation in these pathogenic parasites.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Colorimetry
  • Copper / analysis
  • Egg Shell / chemistry
  • Electrophoresis, Agar Gel
  • Feces / parasitology
  • Female
  • Ferritins / genetics
  • Ferritins / metabolism
  • Gene Expression Regulation, Developmental
  • Genes, Helminth
  • Humans
  • Iron / analysis
  • Iron / metabolism*
  • Life Cycle Stages
  • Liver / parasitology
  • Mice
  • Ovum / chemistry
  • Polymerase Chain Reaction
  • Schistosoma japonicum / genetics
  • Schistosoma japonicum / growth & development*
  • Schistosoma japonicum / metabolism*
  • Schistosoma japonicum / ultrastructure
  • Sex Characteristics
  • Spectrophotometry, Atomic
  • Vitellogenesis

Substances

  • Copper
  • Ferritins
  • Iron