Sources of endogenous glucose production in the Goto-Kakizaki diabetic rat

Diabetes Metab. 2007 Sep;33(4):296-302. doi: 10.1016/j.diabet.2007.03.002. Epub 2007 Jun 5.

Abstract

Plasma glucose, insulin and glucose tolerance were quantified in diabetic Goto-Kakizaki (GK) rats (342+/-45 g, n = 5) and compared with weight-matched non-diabetic Wistars (307+/-30 g, n = 8). Compared to Wistars, GK rats had higher fasting plasma insulin (219+/-50 versus 44+/-14 pmol/l, P<0.002) and glucose (9.2+/-2.3 versus 5.5+/-0.5 mmol/l, P<0.025). GK rats showed impaired glucose tolerance (IPGTT 2 h plasma glucose=14+/-1.5 versus 6.4+/-0.1 mmol/l, P<0.001). Endogenous glucose production (EGP) from glycogenolysis, phosphoenolpyruvate (PEP) and glycerol after 6 hours of fasting was quantified by a primed infusion of [U-(13)C]glucose and (2)H(2)O tracers and (2)H/(13)C NMR analysis of plasma glucose. EGP was higher in GK compared to Wistar rats (191+/-16 versus 104+/-27 mumol/kg per min, P<0.005). This was sustained by increased gluconeogenesis from PEP (85+/-12 versus 35+/-4 mumol/kg per min, P<0.02). Gluconeogenesis from glycerol was not different (20+/-3 in Wistar versus 30+/-6 mumol/kg per min for GK), and glycogenolysis fluxes were also not significantly different (76+/-23 mumol/kg per min for GK versus 52+/-19 mumol/kg per min for Wistar). The Cori cycle accounted for most of PEP gluconeogenesis in both Wistar and GK rats (85+/-15% and 77+/-10%, respectively). Therefore, increased gluconeogenesis in GK rats is largely sustained by increased Cori cycling while the maintenance of glycogenolysis indicates a failure in hepatic autoregulation of EGP.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Glucose / metabolism*
  • Glucose / metabolism*
  • Glycerol / metabolism
  • Magnetic Resonance Spectroscopy
  • Male
  • Rats
  • Rats, Inbred Strains
  • Rats, Wistar

Substances

  • Blood Glucose
  • Glucose
  • Glycerol