The environmental fate of organic pollutants through the global microbial metabolism

Mol Syst Biol. 2007:3:114. doi: 10.1038/msb4100156. Epub 2007 Jun 5.

Abstract

The production of new chemicals for industrial or therapeutic applications exceeds our ability to generate experimental data on their biological fate once they are released into the environment. Typically, mixtures of organic pollutants are freed into a variety of sites inhabited by diverse microorganisms, which structure complex multispecies metabolic networks. A machine learning approach has been instrumental to expose a correlation between the frequency of 149 atomic triads (chemotopes) common in organo-chemical compounds and the global capacity of microorganisms to metabolise them. Depending on the type of environmental fate defined, the system can correctly predict the biodegradative outcome for 73-87% of compounds. This system is available to the community as a web server (http://www.pdg.cnb.uam.es/BDPSERVER). The application of this predictive tool to chemical species released into the environment provides an early instrument for tentatively classifying the compounds as biodegradable or recalcitrant. Automated surveys of lists of industrial chemicals currently employed in large quantities revealed that herbicides are the group of functional molecules more difficult to recycle into the biosphere through the inclusive microbial metabolism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / metabolism*
  • Biodegradation, Environmental
  • Environmental Pollutants / analysis
  • Environmental Pollutants / classification
  • Environmental Pollutants / metabolism*
  • Internet
  • Organic Chemicals / analysis
  • Organic Chemicals / classification
  • Organic Chemicals / metabolism*
  • Predictive Value of Tests
  • Reproducibility of Results

Substances

  • Environmental Pollutants
  • Organic Chemicals