Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae

Appl Environ Microbiol. 2007 Aug;73(15):4839-48. doi: 10.1128/AEM.00425-07. Epub 2007 Jun 1.

Abstract

This investigation addresses the following question: what are the important factors for maintenance of a high catabolic capacity under various starvation conditions? Saccharomyces cerevisiae was cultured in aerobic batch cultures, and during the diauxic shift cells were transferred and subjected to 24 h of starvation. The following conditions were used: carbon starvation, nitrogen starvation in the presence of glucose or ethanol, and both carbon starvation and nitrogen starvation. During the starvation period changes in biomass composition (including protein, carbohydrate, lipid, and nucleic acid contents), metabolic activity, sugar transport kinetics, and the levels of selected enzymes were recorded. Subsequent to the starvation period the remaining catabolic capacity was measured by addition of 50 mM glucose. The results showed that the glucose transport capacity is a key factor for maintenance of high metabolic capacity in many, but not all, cases. The results for cells starved of carbon, carbon and nitrogen, or nitrogen in the presence of glucose all indicated that the metabolic capacity was indeed controlled by the glucose transport ability, perhaps with some influence of hexokinase, phosphofructokinase, aldolase, and enolase levels. However, it was also demonstrated that there was no such correlation when nitrogen starvation occurred in the presence of ethanol instead of glucose.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aerobiosis
  • Biomass
  • Carbon / metabolism*
  • Culture Media
  • Ethanol / metabolism
  • Gene Expression Regulation, Fungal*
  • Glucose / metabolism
  • Heat-Shock Response*
  • Nitrogen / metabolism*
  • Saccharomyces cerevisiae / enzymology
  • Saccharomyces cerevisiae / growth & development
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae / physiology*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism

Substances

  • Culture Media
  • Saccharomyces cerevisiae Proteins
  • Ethanol
  • Carbon
  • Glucose
  • Nitrogen