The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): some dose-response effects on mutagen activation-flavonoid interactions

Mutat Res. 2007 Jul 28;631(2):111-23. doi: 10.1016/j.mrgentox.2007.03.009. Epub 2007 Apr 21.

Abstract

The antimutagenic properties of the most prevalent flavonoids in rooibos (Aspalathus linearis) were compared in the Salmonella typhimurium mutagenicity assay using tester strains TA98 and TA100 with, respectively, 2-acetamido-fluorene (2-AAF) and aflatoxin B(1) (AFB(1)) as mutagens in the presence of metabolic activation. The flavonoids included the dihydrochalcones aspalathin and nothofagin and their flavone analogues, orientin and isoorientin, and vitexin and isovitexin, respectively, as well as luteolin, chrysoeriol, (+)-catechin, quercetin, isoquercitrin, hyperoside and rutin. Flavonoid-mutagen interactions ranged from antimutagenic, comutagenic and promutagenic to mutagenic, while dose-response effects were mutagen-specific and ranged from typical to atypical including biphasic and threshold effects. Aspalathin and nothofagin and their structural flavonoid analogues displayed moderate antimutagenic properties while luteolin and to some extent, chrysoeriol, showed activities comparable to those of the green tea flavonoid (-) epigallocatechin gallate (EGCG). Apart from their mutagenic and promutagenic properties, quercetin and isoquercitrin exhibited concentration-dependent comutagenic and/or antimutagenic effects against 2-AAF- and AFB(1)-induced mutagenesis. Different structural parameters known to affect the antimutagenic properties of flavonoids include their hydrophilic or lipophilic nature due to the extent of hydroxylation and O-methylation, glycosylation on the A and B rings, the C4-keto group and the C2-C3 double bond. The C ring does not appear to be a prerequisite when comparing for the antimutagenic activity of the dihydrochalcones when compared of the dihydrochalcones with the structural flavone analogues.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antimutagenic Agents / pharmacology*
  • Dose-Response Relationship, Drug
  • Flavonoids / pharmacology*
  • Mutagens / toxicity*

Substances

  • Antimutagenic Agents
  • Flavonoids
  • Mutagens