Paradox of epithelial cell calcium homeostasis during vectorial transfer in crayfish kidney

Gen Comp Endocrinol. 2007 Jun-Jul;152(2-3):267-72. doi: 10.1016/j.ygcen.2007.04.006. Epub 2007 Apr 11.

Abstract

The molting cycle of the freshwater crayfish, Procambarus clarkii, has been used as a model to study the cellular physiology and molecular biology of Ca "supply" proteins that effect transcellular vectorial Ca(2+) movement to achieve organismal Ca homeostasis. Specifically, periods of net Ca(2+) influx (postmolt) have been compared with periods of net Ca(2+) balance (intermolt). The broader goal is to understand the paradox facing epithelial cells of maintaining low cytosolic Ca(2+)in the face of mass Ca(2+)transit across epithelial cells. This mini-review compares mRNA and protein expression profiles for a series of proteins that are of strategic importance in effecting transcellular Ca(2+) flux in a selected epithelium, the antennal gland (kidney analog) specifically during apical to basolateral Ca(2+) conveyance. Target proteins were selected as representative of key "stages" in the transcellular transfer of Ca(2+): import (epithelial Ca(2+) channel, ECaC); storage (sarco/endoplasmic reticulum Ca(2+) ATPase, SERCA); buffering (sarcoplasmic Ca(2+) binding protein, SCP); and export (plasma membrane Ca(2+) ATPase, PMCA and Na(+)/Ca(2+) exchanger, NCX). The purpose of this review is to assess coordination of expression of these target proteins at times of high Ca(2+) demand (premolt and postmolt) compared to low Ca demand (intermolt) as a function of cellular location (apical vs. basolateral; endomembranes vs. plasma membranes) and relative abundance within different regions of the antennal gland. Understanding the spatiotemporal regulation of Ca(2+) handling proteins involved in transcellular transport is fundamental to investigating their endocrine regulation.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Astacoidea / physiology*
  • Calcium / metabolism*
  • Epithelial Cells / cytology
  • Epithelial Cells / metabolism*
  • Homeostasis / physiology
  • Kidney / cytology*
  • Kidney / metabolism
  • Molting / physiology

Substances

  • Calcium