Generation and characterization of a proton microbeam for experimental radiosurgery

Technol Cancer Res Treat. 2007 Jun;6(3):205-12. doi: 10.1177/153303460700600308.

Abstract

A proton microbeam has been developed to support various research endeavors. Test subjects may be irradiated from any angle with respect to the vertical because the beamline is contained within a rotating gantry used for human patients. Converting from the treatment to experimental arrangement is quick and straightforward as is the reverse. Using a series of collimators, the final beam diameter at the surface of the subject is 1 mm. The depth from the surface to the Bragg peak in water is 15 mm. Fluence distributions perpendicular to the beam axis were determined by scanning radiographic film exposed at various depths with a scanner having a pixel size of 84.7 microm. The depth dose integrated over the beam area was measured using a parallel plate ionization chamber. Central axis depth doses were calculated by multiplying the ionization chamber signal by the ratio of film doses for the central axis pixels to the integrated beam doses at each depth. A Faraday cup was used to confirm the dose at the surface while TLDs, diodes, and film were used to verify the dose at depth. The usefulness of this beamline for experimental situations has been demonstrated in a feline neurological study. The dosimetry techniques are useful for narrow beams such as used for functional radiosurgery treatments of humans.

MeSH terms

  • Humans
  • Proton Therapy*
  • Radiosurgery / instrumentation*
  • Radiosurgery / methods*
  • Radiotherapy Dosage

Substances

  • Protons