Chemically modified solid-state nanopores

Nano Lett. 2007 Jun;7(6):1580-5. doi: 10.1021/nl070462b. Epub 2007 May 16.

Abstract

Nanopores are extremely sensitive single-molecule sensors. Recently, electron beams have been used to fabricate synthetic nanopores in thin solid-state membranes with subnanometer resolution. Here we report a new class of chemically modified nanopore sensors. We describe two approaches for monolayer coating of nanopores: (1) self-assembly from solution, in which nanopores approximately 10 nm diameter can be reproducibly coated, and (2) self-assembly under voltage-driven electrolyte flow, in which we are able to coat 5 nm nanopores. We present an extensive characterization of coated nanopores, their stability, reactivity, and pH response.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Crystallization / methods*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Nanotechnology / methods*
  • Particle Size
  • Permeability
  • Porosity*
  • Silicon Compounds / chemistry*
  • Surface Properties
  • Ultrafiltration / methods*

Substances

  • Macromolecular Substances
  • Silicon Compounds
  • silicon nitride