Plasticity in mesophyll volume fraction modulates light-acclimation in needle photosynthesis in two pines

Tree Physiol. 2007 Aug;27(8):1137-51. doi: 10.1093/treephys/27.8.1137.

Abstract

Acclimation potential of needle photosynthetic capacity varies greatly among pine species, but the underlying chemical, anatomical and morphological controls are not entirely understood. We investigated the light-dependent variation in needle characteristics in individuals of Pinus patula Schlect. & Cham., which has 19-31-cm long pendulous needles, and individuals of P. radiata D. Don., which has shorter (8-17-cm-long) stiffer needles. Needle nitrogen and carbon contents, mesophyll and structural tissue volume fractions, needle dry mass per unit total area (M(A)) and its components, volume to total area ratio (V/A(T)) and needle density (D = M(A)/(V/A(T))), and maximum carboxylase activity of Rubisco (V(cmax)) and capacity of photosynthetic electron transport (J(max)) were investigated in relation to seasonal mean integrated irradiance (Q(int)). Increases in Q(int) from canopy bottom to top resulted in proportional increases in both needle thickness and width such that needle total to projected surface area ratio, characterizing the efficiency of light interception, was independent of Q(int). Increased light availability also led to larger M(A) and nitrogen content per unit area (N(A)). Light-dependent modifications in M(A) resulted from increases in both V/A(T) and D, whereas N(A) changed because of increases in both M(A) and mass-based nitrogen content (N(M)) (N(A) = N(M)M(A)). Overall, the volume fraction of mesophyll cells increased with increasing irradiance and V/A(T) as the fraction of hypodermis and epidermis decreased with increasing needle thickness. Increases in M(A) and N(A) resulted in enhanced J(max) and V(cmax) per unit area in both species, but mass-based photosynthetic capacity increased only in P. patula. In addition, J(max) and V(cmax) showed greater plasticity in response to light in P. patula. Species differences in mesophyll volume fraction explained most of the variation in mass-based needle photosynthetic capacity between species, demonstrating that differences in plastic adjustments in mass-based photosynthetic activities among these representative individuals were mainly associated with contrasting investments in mesophyll cells. Greater area-based photosynthetic plasticity in P. patula relative to P. radiata was associated with larger increases in M(A) and mesophyll volume fraction with increasing irradiance. These data collectively demonstrate that light-dependent increases in mass-based nitrogen contents and photosynthetic activities were associated with an increased mesophyll volume fraction in needles at higher irradiances. They also emphasize the importance of light-dependent anatomical modifications in determining needle photosynthetic capacity.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization / physiology*
  • Light*
  • Nitrogen / metabolism
  • Photosynthesis / physiology*
  • Pinus / anatomy & histology
  • Pinus / metabolism
  • Pinus / physiology*
  • Plant Leaves / anatomy & histology
  • Plant Leaves / metabolism
  • Plant Leaves / physiology*
  • Species Specificity
  • Xylem / physiology*

Substances

  • Nitrogen