Bromine enrichment in the near-surface region of Br-doped NaCl single crystals diagnosed by Rutherford backscattering spectrometry

J Phys Chem A. 2007 May 24;111(20):4312-21. doi: 10.1021/jp0674120. Epub 2007 Apr 27.

Abstract

Bromine released from sea-salt aerosols and seawater ice is known for its high chemical reactivity. Previous studies have suggested that its availability to the gas-phase could be enhanced by segregation processes increasing Br concentration on the aerosol surface as compared to the bulk. However, little is known about the composition within the near-surface region, that is, the outermost approximately 100 monolayers. We used Rutherford backscattering spectrometry (RBS) to measure Br concentration profiles to a depth of about 750 nm of Br-doped NaCl single crystals to characterize the thermodynamics and kinetics of Br segregation to the near-surface region in moist air. These experiments were carried out on cleavage planes of melt-grown and of annealed solution-grown crystals at room temperature and relative humidities (RH) too low for formation of a stable liquid phase. Segregation of Br was below the detection limit on melt-grown crystals with Br/Cl = 0.01. In the case of annealed solution-grown crystals with Br/Cl = 0.002, average segregations of (0.24 +/- 0.11) x 10(15) and (0.42 +/- 0.12) x 10(15) Br atoms cm-2 were observed at 50% and 65% RH, respectively. No segregation was found at 20% RH. The observed Br segregation can be explained by the formation of an adsorbed liquid layer (depending on crystal surface properties and relative humidity) and preferential, diffusion-limited dissolution of Br into this layer according to the partition coefficient of Br between aqueous and solid NaCl. The thickness of the adsorbed liquid layer, which depends on crystal surface geometry and on relative humidity, can be estimated to range from 4 to at most 59 nm on the basis of measured Br concentrations and partition coefficients. Applying this concept of partitioning to natural sea salt suggests a Br/Cl molar ratio of up to 0.2 in adsorbed surface water of crystallized natural aerosol particles compared to about 0.0015 in seawater. This would have a major impact on heterogeneous reactions on sea-salt particles under dry conditions such as in the freeze-dried Arctic boundary layer.