A method for extracting plant roots from soil which facilitates rapid sample processing without compromising measurement accuracy

New Phytol. 2007;174(3):697-703. doi: 10.1111/j.1469-8137.2007.02032.x.

Abstract

This study evaluates a novel method for extracting roots from soil samples and applies it to estimate standing crop root mass (+/- confidence intervals) in an eastern Amazon rainforest. Roots were manually extracted from soil cores over a period of 40 min, which was split into 10 min time intervals. The pattern of cumulative extraction over time was used to predict root extraction beyond 40 min. A maximum-likelihood approach was used to calculate confidence intervals. The temporal prediction method added 21-32% to initial estimates of standing crop root mass. According to predictions, complete manual root extraction from 18 samples would have taken c. 239 h, compared with 12 h using the prediction method. Uncertainties (percentage difference between mean, and 10th and 90th percentiles) introduced by the prediction method were small (12-15%), compared with uncertainties caused by spatial variation in root mass (72-191%, for nine samples per plot surveyed). This method provides a way of increasing the number of root samples processed per unit time, without compromising measurement accuracy.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Likelihood Functions
  • Plant Roots / metabolism*
  • Plants / metabolism*
  • Research Design
  • Soil*
  • South America
  • Specimen Handling / methods*
  • Trees

Substances

  • Soil