Identification of lactic acid bacteria from fermented tea leaves (miang) in Thailand and proposals of Lactobacillus thailandensis sp. nov., Lactobacillus camelliae sp. nov., and Pediococcus siamensis sp. nov

J Gen Appl Microbiol. 2007 Feb;53(1):7-15. doi: 10.2323/jgam.53.7.

Abstract

Eighteen rod-shaped homofermentatives, six heterofermentatives, and a coccal homofermentative lactic acid bacteria were isolated from fermented tea leaves (miang) produced in the northern part of Thailand. The isolates were placed in a monophyletic cluster consisting of Lactobacillus and Pediococcus species. They were divided into seven groups by phenotypic and chemotaxonomic characteristics, DNA-DNA similarity, and 16S rRNA gene sequences. Groups I to VI belonged to Lactobacillus and Group VII to Pediococcus. All of the strains tested produced DL-lactic acid but those in Group IV produced L-lactic acid. The strains tested in Groups I, II and V had meso-diaminopimelic acid in the cell wall. Six strains in Group I were identified as Lactobacillus pantheris; five strains in Group II as Lactobacillus pentosus; and four strains in Group V as Lactobacillus suebicus. Two strains in Group VI showed high DNA-DNA similarity for each other and MCH4-2 was closest to Lactobacillus fermentum CECT 562(T) with 99.5% of 16S rRNA gene sequence similarity. Five strains in Group III are proposed as Lactobacillus thailandensis sp. nov., and MCH5-2(T) (BCC 21235(T)=JCM 13996(T)=NRIC 0671(T)=PCU 272(T)) is the type strain which has 49 mol% G+C of DNA. Two strains in Group IV are proposed as Lactobacillus camelliae sp. nov., and the type strain is MCH3-1(T) (BCC 21233(T)=JCM 13995(T)=NRIC 0672(T)=PCU 273(T)) which has 51.9 mol% G+C of DNA. One strain in Group VII is proposed as Pediococcus siamensis sp. nov., and MCH3-2(T) (BCC 21234(T)=JCM 13997(T)=NRIC 0675(T)=PCU 274(T)) is the type strain which has 42 mol% G+C of DNA.

MeSH terms

  • Base Composition
  • Fermentation*
  • Lactobacillus / classification
  • Lactobacillus / genetics
  • Lactobacillus / isolation & purification*
  • Lactobacillus / metabolism
  • Plant Leaves / microbiology*
  • RNA, Ribosomal, 16S / genetics
  • Tea / microbiology*

Substances

  • RNA, Ribosomal, 16S
  • Tea