Vertical variations of particle number concentration and size distribution in a street canyon in Shanghai, China

Sci Total Environ. 2007 Jun 1;378(3):306-16. doi: 10.1016/j.scitotenv.2007.02.040. Epub 2007 Apr 5.

Abstract

Measurements of particle number size distribution in the range of 10-487 nm were made at four heights on one side of an asymmetric street canyon on Beijing East Road in Shanghai, China. The result showed that the number size distributions were bimodal or trimodal and lognormal in form. Within a certain height from 1.5 to 20 m, the particle size distributions significantly changed with increasing height. The particle number concentrations in the nucleation mode and in the Aitken mode significantly dropped, and the peaking diameter in the Aitken mode shifted to larger sizes. The variations of the particle number size distributions in the accumulation mode were less significant than those in the nucleation and Aitken modes. The particle number size distributions slightly changed with increasing height ranging from 20 to 38 m. The particle number concentrations in the street canyon showed a stronger association with the pre-existing particle concentrations and the intensity of the solar radiation when the traffic flow was stable. The particle number concentrations were observed higher in Test I than in Test II, probably because the small pre-existing particle concentrations and the intense solar radiation promoted the formation of new particles. The pollutant concentrations in the street canyon showed a stronger association with wind speed and direction. For example, the concentrations of total particle surface area, total particle volume, PM2.5 and CO were lower in Test I (high wind speed and step-up canyon) than in Test II (low wind speed and wind blowing parallel to the canyon). The equations for the normalized concentration curves of the total particle number, CO and PM2.5 in Test I and Test II were derived. A power functions was found to be a good estimator for predicting the concentrations of total particle number, CO and PM2.5 at different heights. The decay rates of PM2.5 and CO concentrations were lower in Test I than in Test II. However, the decay rate of the total particle number concentration in Test I was similar to that in Test II. No matter how the wind direction changed, for example, in the step-up case or wind blowing parallel to the canyon, the decay rates of the total particle number concentration were larger than those of PM2.5 and CO concentrations. For example, CO concentrations decreased by 0.33 and 0.69 at the heights ranging from 1.5 to 38 m in Test I and Test II, while the total particle number concentrations decreased by 0.72 and 0.85 within the same height ranges in Test I and Test II. It is concluded that the coagulation process, besides the dilution process, affected the total particle number concentration.

MeSH terms

  • Air Pollutants / analysis*
  • Air* / analysis
  • Air* / standards
  • China
  • Environmental Monitoring / methods*
  • Particle Size
  • Particulate Matter / analysis*
  • Urbanization

Substances

  • Air Pollutants
  • Particulate Matter