Iron(III) complex of a crown ether-porphyrin conjugate and reversible binding of superoxide to its Iron(II) form

J Am Chem Soc. 2007 Apr 11;129(14):4217-28. doi: 10.1021/ja064984p. Epub 2007 Mar 20.

Abstract

The synthesis and characterization of the Fe(III) complex of a novel crown ether-porphyrin conjugate, 52-N-(4-aza-18-crown-6)methyl-54,104,154,204-tetra-tert-butyl-56-methyl-5,10,15,20-tetraphenylporphyrin (H2Porph), as well as the corresponding hydroxo, dimeric, Fe(II), and peroxo species are reported. The crystal structure of [FeIII(Porph)Cl].H3O+.FeCl4-.C6H6.EtOH is also reported. [FeIII(Porph)(DMSO)2]+ and K[FeIII(Porph)(O22-)] are high-spin species (Mössbauer data: delta = 0.38 mm s(-1), DeltaEq = 0.83 mm s(-1) and delta = 0.41 mm s(-1), DeltaEq = 0.51 mm s(-1), respectively), whereas in a solution of reduced [FeIII(Porph)(DMSO)2]+ complex the low-spin [FeII(Porph)(DMSO)2] (delta = 0.44 mm s(-1), DeltaEq = 1.32 mm s(-1)) and high-spin [FeII(Porph)(DMSO)] (delta = 1.27 mm s(-1), DeltaEq = 3.13 mm s(-1)) iron(II) species are observed. The reaction of [FeIII(Porph)(DMSO)2]+ with KO2 in DMSO has been investigated. The first reaction step, involving reduction to [FeII(Porph)(DMSO)2], was not investigated in detail because of parallel formation of an Fe(III)-hydroxo species. The kinetics and thermodynamics of the second reaction step, reversible binding of superoxide to the Fe(II) complex and formation of an Fe(III)-peroxo species, were studied in detail (by stopped-flow time-resolved UV/vis measurements in DMSO at 25 degrees C), resulting in kon = 36 500 +/- 500 M(-1) s(-1), koff = 0.21 +/- 0.01 s(-1) (direct measurements using an acid as a superoxide scavenger), and KO2- = (1.7 +/- 0.2) x 10(5) (superoxide binding constant kinetically obtained as kon/koff), (1.4 +/- 0.1) x 10(5), and (9.0 +/- 0.1) x 10(4) M(-1) (thermodynamically obtained in the absence and in the presence of 0.1 M NBu4PF6, respectively). Temperature-dependent kinetic measurements for kon (-40 to 25 degrees C in 3:7 DMSO/CH3CN mixture) yielded the activation parameters DeltaH = 61.2 +/- 0.9 kJ mol(-1) and DeltaS = +48 +/- 3 J K(-1) mol(-1). The observed reversible binding of superoxide to the metal center and the obtained kinetic and thermodynamic parameters are unique. The finding that fine-tuning of the proton concentration can cause the Fe(III)-peroxo species to release O2- and form an Fe(II) species is of biological interest, since this process might occur under very specific physiological conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crown Ethers / chemistry*
  • Electrochemistry
  • Ferric Compounds / chemistry*
  • Ferrous Compounds / chemistry*
  • Kinetics
  • Models, Molecular
  • Molecular Structure
  • Porphyrins / chemical synthesis
  • Porphyrins / chemistry*
  • Spectrum Analysis
  • Superoxides / chemistry*
  • Thermodynamics

Substances

  • Crown Ethers
  • Ferric Compounds
  • Ferrous Compounds
  • Porphyrins
  • Superoxides