Shape filtering for false positive reduction at computed tomography colonography

Med Image Comput Comput Assist Interv. 2006;9(Pt 2):84-92. doi: 10.1007/11866763_11.

Abstract

In this paper, we treat the problem of reducing the false positives (FP) in the automatic detection of colorectal polyps at Computer Aided Detection in Computed Tomography Colonography (CAD-CTC) as a shape-filtering task. From the extracted candidate surface, we obtain a reliable shape distribution function and analyse it in the Fourier domain and use the resulting spectral data to classify the candidate surface as belonging to a polyp or a non-polyp class. The developed shape filtering scheme is computationally efficient (takes approximately 2 seconds per dataset to detect the polyps from the colonic surface) and offers robust polyp detection with an overall false positive rate of 5.44 per dataset at a sensitivity of 100% for polyps greater than 10 mm when it was applied to standard and low dose CT data.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Cluster Analysis
  • Colonic Polyps / diagnostic imaging*
  • Colonography, Computed Tomographic / methods*
  • False Positive Reactions
  • Humans
  • Pattern Recognition, Automated / methods*
  • Radiographic Image Enhancement / methods*
  • Radiographic Image Interpretation, Computer-Assisted / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity