Metal-organic frameworks exhibiting strong anion-pi interactions

Chem Commun (Camb). 2006 Dec 14:(46):4808-10. doi: 10.1039/b612660j.

Abstract

Coordination polymers offer a significant potential for applications in adsorption, guest and anion recognition and sensing. Their structure commonly provides binding sites for such specific interactions as pi-pi stacking and XH...pi hydrogen bonding. The latter reflects the ability of the pi-cloud to interact with positively polarized atoms. An electrostatic interaction between anionic species and electron deficient heterocycles, which parallels the above binding scheme, is also possible and very recently the existence of anion-pi interactions was proved in the solid state and in solution. This effect may be significant also for biomolecule/solution interfaces, as it occurs in protein structures. In fact, such interactions could be especially relevant for host-guest chemistry of coordination polymers, particularly for functionalization of hydrophobic crystal cavities and for the design of geometrically rigid anion receptors. However, typical electron deficient heterocycles such as 1,3,5-triazines and 1,2,4,5-tetrazines are very weak donors and they are hardly suitable for bridging metal ions and the generation of coordination frameworks. As a system that combines efficient donor properties towards transition metal ions and a pronounced ability for anion-pi interactions we have developed unsubstituted pyridazino[4,5-d]pyridazine, which was readily accessible by a novel one-pot synthesis involving inverse electron demand Diels-Alder cycloaddition (Scheme 1). Unusual anion binding properties of the ligand may be clearly related to its electron-deficiency (LUMO energy -1.591 vs. -0.288 eV for the parent pyridazine), influenced also by N-coordination to such Lewis acids as metal ions.

Publication types

  • Research Support, Non-U.S. Gov't