Micellization of telechelic associative polymers: self-consistent field modeling and comparison with scaling concepts

J Phys Chem B. 2007 Mar 22;111(11):2903-9. doi: 10.1021/jp0683768. Epub 2007 Feb 24.

Abstract

We present numerical results from self-consistent field calculations on the micellization of telechelic associative polymers and their mono-functional analogues. These results are confronted with relatively simple scaling concepts. The proportionality of the critical micelle concentration (CMC) with the hydrophilic backbone length, as found in the calculations, shows good correspondence with a scaling argument based on the entropic penalty of loop formation. It is also shown that models for the conformation of spherical brushes can be applied to predict the structure of the flowerlike micelles formed by these telechelic polymers. Furthermore, we find good agreement between the numerical dependence of the aggregation number upon both backbone and terminal hydrophobe length and an analytical expression derived from the well-known Daoud-Cotton model by introducing a correction for the finite size of the micellar core.