Application of a pyroprobe to simulate smoking and metabolic degradation of abused drugs through analytical pyrolysis

J Forensic Sci. 2007 Mar;52(2):473-8. doi: 10.1111/j.1556-4029.2006.00371.x.

Abstract

Smoking of illicit drugs can produce unique metabolic biomarkers. Smoking conditions can be partially modeled via pyrolysis, a process that decomposes a chemical compound by extreme heat. Pyrolytic decomposition was found to be useful as a limited metabolic mimic in that analytical pyrolysis can be used to generate some of the same compounds produced by metabolic degradation. This project focused on the pyrolysis of cocaine and methamphetamine using a pyroprobe coupled with a GC/MS and more generally, potential applications of pyrolysis to forensic toxicology. Common diluents including lidocaine, caffeine, and benzocaine were pyrolyzed in mixtures with cocaine and methamphetamine. Correlations between pyrolytic and metabolic degradations revealed that this method has the capability to produce some of the reported metabolites such as norcocaine and cocaethylene for cocaine, and amphetamine for methamphetamine. The results demonstrate that analytical pyrolysis has the potential to identify some metabolic products and to supplement in vivo and enzymatic studies.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.