Controlled MegaDalton assembly with locally stiff but globally flexible polyphenylene dendrimers

J Am Chem Soc. 2007 Mar 21;129(11):3292-301. doi: 10.1021/ja067662u. Epub 2007 Feb 23.

Abstract

The divergent polyphenylene dendrimer synthesis of the largest chemically monodisperse molecules to date, up to 28 nm at 271.6 kDa for the sixth generation, is presented. Monodispersity, conformational flexibility, and an assembly behavior reminiscent of multimeric proteins for the locally stiff, macroporous dendrimers were evaluated with a combination of molecular and polymer characterization tools, namely size exclusion chromatography, atomic force microscopy, ultrahigh-mass MALDI-TOF mass spectrometry, and dynamic light scattering. Remarkably, the high-precision MegaDalton assembly of shape-adaptable dendrimers occurs in the absence of electrostatic or hydrogen-bonding interactions and is the product of Lilliputian solvophobic interactions, mediated by the dendrimer arm size, shape, and stiffness. This covalent/noncovalent approach offers a general molecular shaping motif that is completely different than what has been previously accessible with conventional self-assembly.