Epigenetic silencing of HSulf-1 in ovarian cancer:implications in chemoresistance

Oncogene. 2007 Jul 26;26(34):4969-78. doi: 10.1038/sj.onc.1210300. Epub 2007 Feb 19.

Abstract

To investigate the mechanism by which HSulf-1 expression is downregulated in ovarian cancer, DNA methylation and histone acetylation of HSulf-1 was analysed in ovarian cancer cell lines and primary tumors. Treatment of OV207 and SKOV3 by 5-aza-2'-deoxycytidine resulted in increased transcription of HSulf-1. Sequence analysis of bisulfite-modified genomic DNA from ovarian cell lines and primary tumors without HSulf-1 expression revealed an increase in the frequency of methylation of 12 CpG sites in exon 1A. Chromatin immunoprecipitation assays showed an increase in histone H3 methylation in cell lines without HSulf-1 expression. To assess the significance of HSulf-1 downregulation in ovarian cancer, OV167 and OV202 cells were transfected with HSulf-1 siRNA. Downregulation of HSulf-1 expression in OV167 and OV202 cells lead to an attenuation of cisplatin-induced cytotoxicity. Moreover, patients with ovarian tumors expressing higher levels of HSulf-1 showed a 90% response rate (27/30) to chemotherapy compared to a response rate of 63% (19/30) in those with weak or moderate levels (P=0.0146, chi(2) test). Collectively, these data indicate that HSulf-1 is epigenetically silenced in ovarian cancer and that epigenetic therapy targeting HSulf-1 might sensitize ovarian tumors to conventional first-line therapies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Antineoplastic Agents / toxicity
  • Azacitidine / analogs & derivatives
  • Azacitidine / pharmacology
  • Cell Line, Tumor
  • Chromatin / metabolism
  • Cisplatin / toxicity
  • CpG Islands
  • DNA Methylation
  • Decitabine
  • Drug Resistance, Neoplasm / genetics*
  • Enzyme Inhibitors / pharmacology
  • Epigenesis, Genetic*
  • Female
  • Gene Expression Regulation, Neoplastic
  • Gene Silencing*
  • Histone Deacetylase Inhibitors
  • Humans
  • Middle Aged
  • Ovarian Neoplasms / drug therapy*
  • Ovarian Neoplasms / enzymology
  • Ovarian Neoplasms / genetics*
  • Sulfotransferases / genetics*
  • Sulfotransferases / metabolism

Substances

  • Antineoplastic Agents
  • Chromatin
  • Enzyme Inhibitors
  • Histone Deacetylase Inhibitors
  • Decitabine
  • SULF1 protein, human
  • Sulfotransferases
  • Azacitidine
  • Cisplatin