Oxidative stress and disuse muscle atrophy

J Appl Physiol (1985). 2007 Jun;102(6):2389-97. doi: 10.1152/japplphysiol.01202.2006. Epub 2007 Feb 8.

Abstract

Skeletal muscle inactivity is associated with a loss of muscle protein and reduced force-generating capacity. This disuse-induced muscle atrophy results from both increased proteolysis and decreased protein synthesis. Investigations of the cell signaling pathways that regulate disuse muscle atrophy have increased our understanding of this complex process. Emerging evidence implicates oxidative stress as a key regulator of cell signaling pathways, leading to increased proteolysis and muscle atrophy during periods of prolonged disuse. This review will discuss the role of reactive oxygen species in the regulation of inactivity-induced skeletal muscle atrophy. The specific objectives of this article are to provide an overview of muscle proteases, outline intracellular sources of reactive oxygen species, and summarize the evidence that connects oxidative stress to signaling pathways contributing to disuse muscle atrophy. Moreover, this review will also discuss the specific role that oxidative stress plays in signaling pathways responsible for muscle proteolysis and myonuclear apoptosis and highlight gaps in our knowledge of disuse muscle atrophy. By presenting unresolved issues and suggesting topics for future research, it is hoped that this review will serve as a stimulus for the expansion of knowledge in this exciting field.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Humans
  • Male
  • Models, Biological*
  • Muscular Atrophy / physiopathology*
  • Oxidative Stress*
  • Oxygen / metabolism*
  • Oxygen Consumption
  • Reactive Oxygen Species / metabolism*
  • Signal Transduction*

Substances

  • Reactive Oxygen Species
  • Oxygen